Cell death of motoneurons in the chick embryo spinal cord. V. Evidence on the role of cell death and neuromuscular function in the formation of specific peripheral connections.
نویسنده
چکیده
Previous reports from this laboratory have shown that the chronic treatment of chick embryos with neuromuscular blocking agents (e.g., curare, alpha-bungarotoxin), during the period of naturally occurring cell death of spinal motoneurons (days 5 to 10), greatly reduces the amount of cell death in this system. The surviving motoneurons continue differentiation and innervate the peripheral musculature. Since cell death has been prevented in these preparations from the earliest stages of limb innervation on day 4 or 5, it was expected that any inappropriate synaptic connections present at that time, or formed later, would be retained as long as the cell and their axons were prevented from regressing. To test this possibility, small injections of horseradish peroxidase were made into specific leg and wing muscles on embryonic day 10 in order to label retrogradely motoneuron pools in the spinal cord. The location of labeled motoneurons was found to be the same in control and experimental embryos. The specific muscles examined included the gastrocnemius, peroneus, adductor, and sartorius in the leg and the biceps, triceps, extensor metacarpi radialis, and flexor carpi ulnaris in the wing. In virtually all cases, there was a greater number of labeled motoneurons in the experimental cases. Despite this difference, the location of motoneuron pools in the rostral-caudal and transverse planes were remarkably similar in control and experimental embryos. Thus, natural cell death in this system is not primarily designed to remove errors in synaptic connectivity. Since a normal pattern of neuromuscular connections was formed in the virtual absence of functional synaptic interactions between motoneurons and their targets, these data do not support the contention that function is involved in the developmental specificity of peripheral connectivity.
منابع مشابه
Nicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion
Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...
متن کاملMercuric Chloride Induced Cell Death in Spinal Cord of Embryo in Rat
A B S T R A C TIntroduction: Because of more exposure to mercury compounds, the prenatal and postnatal neurotoxic effects of mercury compounds have gained more attention in last decade. The aim of this study was to investigate the effects of mercuric chloride intoxication on spinal cord development during prenatal period. Methods: 36 adult Sprague-dawley rats after observing vaginal mating plaq...
متن کاملReduction of neuromuscular activity is required for the rescue of motoneurons from naturally occurring cell death by nicotinic-blocking agents.
Spinal motoneurons (MNs) in the chick embryo undergo programmed cell death coincident with the establishment of nerve-muscle connections and the onset of synaptic transmission at the neuromuscular junction. Chronic treatment of embryos during this period with nicotinic acetylcholine receptor (nAChR)-blocking agents [e.g., curare or alpha-bungarotoxin (alpha-BTX)] prevents the death of MNs. Alth...
متن کاملThe Role of Caspase 9 during Programmed Cell Death in Ciliary Ganglia of Chick Embryos
During programmed cell death (PCD) apoptosis is controlled by many factors such as proteases. With no specific protease (s) known during PCD in the developing nervous system so far, we sought to determine if any specific protease (s) is involved in this process and therefore used different protease inhibitors during PCD (from embryonic day 6 to 10) in chick embryos. Among the inhibitors commerc...
متن کاملThe expression of trkB and p75 and the role of BDNF in the developing neuromuscular system of the chick embryo.
The neurotrophin, brain-derived neurotrophic factor, prevents motoneuron cell death during the normal development of the chick embryo. Brain-derived neurotrophic factor is a ligand for the low-affinity NGF receptor, p75, and for the high-affinity neurotrophin receptor, trkB. If motoneurons respond directly to brain-derived neurotrophic factor then they must possess at least one, and possibly bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 1 2 شماره
صفحات -
تاریخ انتشار 1981